基于神经网络的大范围空间标定技术

田震张玘熊九龙王国超

(国防科学技术大学机电工程与自动化学院,湖南长沙 410073)

摘要 目前利用神经网络进行摄像机标定的研究,只能实现单个位置上或小范围空间的标定精度要求。当标定空间扩大到一定范围,标定精度和标定速度的冲突便不可调节。首先推导了摄像机的成像原理,证明沿世界坐标系 3 个坐标轴(*X*w轴,*Y*w轴和 *Z*w轴)方向存在截然不同的成像规律,提出沿上述 3 个方向分别进行标定的并行标定方法;进而提出一种新的归一化方法,较好的提高了 *X*w轴和 *Y*w轴方向的标定精度。实验结果表明,*Z*w轴向标定 是整个大范围标定的关键,其重构标准差远大于 *X*w轴和 *Y*w轴的重构标准差。在保证精度与速度的前提下,新的 归一化方法扩大了摄像机标定范围。

Large-Scale Camera Calibration with Neural Network

Tian Zhen Zhang Qi Xiong Jiulong Wang Guochao

(Mechatronics and Automation School, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract Current researches on camera calibration using neural network can only keep precision within a small space, unfortunabely, there has no such a method that can solve conflict between calibration precision and speed as space extends. It is proved that there are different imaging rules along three axes (X_W axis, Y_W axis and Z_W axis) in the world coordinate system, and a brand new parallel calibration method is created to calibrate camera along these three directions respectively, namely parallel calibration. A new normalization method is proposed and better calibration precisions are gained along both X_W axis and Y_W axis. There comes conclusion that calibration along Z_W axis is critical to the whole large-scale calibration since standard deviation of reconstruction along Z_W axis is much higher than those along X_W axis and Y_W axis. Expersmental results show that the new normalization method extends calibration scale while keeping both calibration precision and speed.

Key words machine vision; camera calibration; parallel calibration; neural network OCIS codes 150.1488; 150.0150; 100.4996; 200.4260

1 引 言

计算机视觉的基本任务是从摄像机获取的图像 信息中计算恢复出物体的三维空间信息。三维物点 与其对应的二维像点之间的对应关系是由摄像机成 像几何模型决定的,确定这种对应关系的过程,即摄 像机标定。目前的标定方法可分为传统标定方 法^[1~4]、自标定方法^[5]和基于主动视觉的标定方 法^[6]。其中基于神经网络的摄像机标定属于传统标 定方法。

20 世纪 80 年代初, J. J. Hopfield^[7]和 D.

Rumelhart 等^[8]研究发现神经网络潜力巨大,促使该领 域的研究快速发展。鉴于神经网络在函数逼近方面的 突出能力,J. Wen 等^[9]和 M. Lynch 等^[10]于 20 世纪 90 年代初开始将神经网络应用到摄像机标定技术当中。 将神经网络应用到摄像机标定中,可以跳过求取摄像 机内外参数的过程,利用像点和相应物点作为输入输 出训练集进行训练,得到能够反映输入输出映射关系 的网络。

成像过程中存在线性因素和非线性因素:光沿 直线传播,形成针孔成像模型,此为线性因素;而由

导师简介:张 玘(1959—),男,教授,博士生导师,主要从事仪器科学与技术等方面的研究。

E-mail: zhang_qi_7233@163.com

收稿日期: 2010-09-16; 收到修改稿日期: 2010-10-25

作者简介:田 震(1984—),男,硕士研究生,主要从事摄像机标定方面的研究。E-mail: tzh552911@126.com

于制造工艺及其他因素的影响,成像过程中存在径向及切向畸变等,这些是非线性因素。线性因素与 非线性因素,前者为主导。后者决定径向识别精 度^[11,12],目前的标定方法,大都依赖神经网络的非 线性泛化能力,跳过了线性因素的研究,将研究重点 直接放在非线性因素的研究与补偿上,从而导致其 只能局限于单个位置或小范围空间的标定。随着标 定空间范围的扩大,线性因素的主导地位体现出来 后,其精度就无法继续保持下去。

本文从摄像机成像的基本原理出发,指出沿 Xw,Yw,Zw 三轴向具有不同的成像规律;提出了一 种新的并行标定方法,建立不同的训练点集对世界 坐标中的 Xw,Yw,Zw 信息分别进行标定,在保证总 体标定精度与标定速度的同时扩大了标定空间;同 时提出了一种新型归一化方法,进一步提高了 Xw 轴和 Yw 轴的标定精度。

2 基于神经网络的大范围空间标定

2.1 线性成像规律分析

摄像机标定的最终任务,是建立起像点坐标 (u,v)与物点世界坐标(X_w, Y_w, Z_w)之间的映射关 系^[13]。像点坐标(u,v)表示该像点在图像数组中的 行数与列数,并没有用物理单位表示出该像点在图 像中的位置,需要再建立以物理单位表示的图像坐 标系 XO_1Y 。其中 O_1 定义为摄像机光轴与图像平面 的交点,如图 1 所示。齐次坐标(u,v,1)^T与(X,Y, 1)^T之间有如下对应关系:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{dX} & 0 & u_0 \\ 0 & \frac{1}{dY} & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}, \quad (1)$$

式中 (u_0, v_0) 为 O_1 在 uO_0v 坐标系中的坐标,dX,dY 分别为每个像素在X轴与Y轴方向上的物理尺寸。

图 1 图像坐标系 Fig.1 Image coordinate system

摄像机成像几何关系如图 2 所示。其中 O 点为 摄像机光心, x 轴和 y 轴与图像的 X 轴和 Y 轴平行, z 轴为摄像机的光轴。点 O 与x,y,z 轴组成摄像机坐 标系, OO_1 为摄像机焦距。世界坐标系由 X_w , Y_w , Z_w 轴组成,用来描述摄像机在空间的具体位置。设 空间中某一点 P 在世界坐标系与摄像机坐标系下的 齐次坐标分别为(X_w , Y_w , Z_w ,1)^T 和(x,y,z,1)^T, 二者存在如下关系:

如图 2 所示,物点 P 在摄像机坐标系下坐标 (x,y,z)与对应图像坐标(X,Y)直接反映的是摄像 机的成像几何关系。不考虑非线性因素时,可以通 过针孔成像模型来描述成像几何关系,即

$$\frac{x}{X} = \frac{y}{Y} = \frac{z}{f},\tag{3}$$

式中 f 为摄像机的焦距。

(3)式反映了从像点到物点之间的映射关系,其中(1)式与(2)式均为坐标系变换,摄像机的成像规 律集中于(3)式中。

在摄像机坐标系下,当物点沿 x, y, z中一轴向 进行运动时,另外两轴向的信息保持不变,为常量。 为方便讨论,当物点分别沿 x轴和 y 轴方向移动时, 取 z = a,由(3)式可得

$$\frac{x}{X} = \frac{y}{Y} = \frac{a}{f} = k_1, \qquad (4)$$

也即

$$\begin{cases} x = k_1 X\\ y = k_1 Y \end{cases}$$
(5)

式中 $k_1 = a/f$ 为常数。

当物点沿 z 轴方向移动时,设 x=b, y=c,由 (3)式得

$$z = \frac{bf}{X} = \frac{cf}{Y},\tag{6}$$

即

$$z = \frac{k_2}{X} = \frac{k_3}{Y}.$$
(7)

由(5)式和(7)式可以看出,当物点分别沿 x 轴 和 y 轴运动时,成像规律成正比关系;当物点沿 z 轴 运动时,成像规律成反比关系。结合(1)式和(2)式, (x,y,z) 经坐标系平移与旋转变换得到 $(X_w,Y_w,$ Z_w),(X,Y) 经坐标系平移与伸缩变换得到(u,v), 至此,便完成了 (X_w,Y_w,Z_w) 与(u,v)之间的映射 关系。可知,若旋转矩阵 R 为单位矩阵,则 X_w 和 Y_w 方向的成像规律仍然保持为线性;若 R 不为单位矩 阵,则坐标变换会在 X_w 和 Y_w 方向引入非线性误 差;而不管 R 为何值, Z_w 方向的成像规律均会在反 比关系的基础上变得更加复杂。

2.2 并行标定方法

由以上分析可知,物点沿 X_w 和 Y_w 轴方向的成 像规律接近线性,沿 Z_w 轴方向的成像规律为复杂 的非线性。当标定空间较小时,上述3个方向成像规 律差异较小,使用相同的训练点集同时标定 X_w , Y_w , Z_w 信息,能够获得较高的精度^[14];当标定空间 逐渐扩大后,训练点集不能同时反映上述三种信息 的变化规律,导致标定精度的降低。为提高标定精 度,需要扩大标定点集的规模,这又会导致标定速度 的降低。当标定空间扩大到一定范围后,训练精度与 训练速度间的矛盾便不可调节。本文通过建立不同 的训练点集得到不同的神经网络,对 X_w , Y_w , Z_w 分 别进行标定,即并行标定。依据(5)式, X_w 与 Y_w 的 成像规律相似,故可以采用相同的神经网络进行标 定,标定方式如图3所示。

图 3 并行标定方法 Fig. 3 Parallel calibration

2.3 归一化方法

采用反向传播(BP)神经网络,隐层传递函数为

tansig。依据其函数特性,需要对图像坐标进行归一化。普通归一化方法使用单一值对所有点进行归一化,其作用仅仅是对神经网络的输入控制在传递函数的有效区间内。针对 X_w 和 Y_w 的成像规律,提出一种新的归一化方法。

摄像机坐标系下,物点沿 z 轴从位置 1 运动至 位置 2,其 x 和 y 坐标值保持不变。设两位置下标定 模板中右下角角点(最大图像坐标点) P_m 和其它任 一角点 P_0 的摄像机坐标分别为 $(x_m, y_m), (x'_m, y'_m)$ 和 $(x_0, y_0), (x'_0, y'_0);$ 相应的图像物理坐标为 $(X_m, Y_m), (X'_m, Y'_m)$ 和 $(X_0, Y_0), (X'_0, Y'_0)$ 。若只考虑 x 轴 方向, 由(5)式可得

$$\begin{cases} x_{0} = k_{1}X_{0} \\ x_{m} = k_{1}X_{m} \\ x_{0}' = k_{1}'X_{0}' \\ x_{m}' = k_{1}'X_{m}' \end{cases}$$
(8)

在位置 1,使用 P_m 的坐标值 X_m 进行归一化,则 P_0 的归一化坐标为

$$X = \frac{X_0}{X_m} = \frac{x_0/k_1}{x_m/k_1} = \frac{x_0}{x_m}.$$
 (9)

在位置 2,使用 P_m 的坐标值 X'_m 进行归一化,则 P_0 的归一化坐标为

$$X' = \frac{X'_{0}}{X'_{m}} = \frac{x'_{0}/k'_{1}}{x'_{m}/k'_{1}} = \frac{x'_{0}}{x'_{m}}.$$
 (10)

两位置中,同一物点的 x 坐标不变,即

$$\begin{cases} x_0 = x'_0 \\ x_m = x'_m \end{cases},\tag{11}$$

则有

$$X = X', \tag{12}$$

同理

$$Y = Y'. (13)$$

由(12)式和(13)式可知,同一物点 P。在两个 位置的归一化坐标相同。在图像物理坐标系下,若在 模板的每个位置均使用 P_m 的坐标值对图像坐标进 行归一化处理,则由其中一个位置的图像坐标便可 得到其他任意位置的图像坐标。但是,实际中得到的 是图像像素坐标,模板是沿世界坐标系的 Z_w 轴移 动,而非z轴,这些均涉及到坐标变换,从而引入非 线性因素;同时,摄像机成像中亦存在诸多非线性因 素,也导致物点在各个位置对应的图像坐标的偏移 量不同。所有这些非线性因素要求构建恰当的神经 网络来解决。

2.4 神经网络结构

BP 网络为一种多层前馈网络。由于含单隐层

的前馈网络可实现从输入到输出的任意非线性映 射,因此 BP 网络可以用于拟合成像过程中的非线 性映射关系。但是,一个隐层虽已足够反映这种映 射关系,但并不一定最好。文献[15]证明,当样本规 模为 N 时,双隐层前馈网络只需(N/2)+3 个隐层 神经元便能达到单隐层神经网络 N-1 个神经元所 能获得的精度,即网络规模越大,双隐层网络的优越 性越大。本文所进行的并行标定实验,采用的样本 规模很大,故采用了双隐层神经网络;通过反复实 验,确立 5×10 的双隐层结构。

3 标定实验

实验中的实验设备包括:中国大恒(集团)有限 公司生产的 DH-SV2000FC 工业摄像机,最大分辨 率为 1628 pixel×1236 pixel,焦距 50 mm,像素尺寸 为 4.2 μ m×4.2 μ m;北京微纳光科仪器有限公司生 产的 WNSC400 系列电移台控制器,电动二维平移 台 WN201ZA,电动升降台 WN03VA500,电动三维 转台 WN302RA200,手动升降台 WN03VM500,手 动旋转台 WN02RM100,精密角位台 WN04GM15 等。深圳科创时代电子有限公司生产的 CG-0150S-3.00 机器视觉标定模板,模板的尺寸为 150 mm× 150 mm,棋盘格的尺寸为 3 mm×3 mm。整体实验 设备如图 4 所示。

图 4 整体实验设备 Fig. 4 Photo of experimental equipment

沿世界坐标系 Zw 轴正向移动标定模板,每隔 3.125 mm通过左右摄像机拍摄模板图像,总共 31 组,故整体标定空间的 Zw 轴深度为 93.75 mm。通 过角点提取算法获取角点并进行匹配,每个位置获取 38 列 40 行共 1520 组角点对,如图 5 所示。标定所覆 盖的空间范围为 111 mm×117 mm×93.75 mm,如 图 6所示。

3.1 沿 X_w 和 Y_w 轴方向的标定

沿 X_w 轴和 Y_w 轴同时进行标定时,采用第 1 个位置和第 31 个位置的角点对以及相应的 X_w 和

图 5 角点提取 Fig. 5 Corner extraction

图 6 标定空间 Fig. 6 Calibration space

Y_w 理论值作为训练集。建立 $4 \times 5 \times 10 \times 2$ 的 BP 神经网络,隐层和输出层传递函数分别为 tansig 和 purelin,均方误差指标为 10^{-3} ,最高迭代次数为 1000。从其他位置中任选其一作为重建位置,利用 已训练好的网络进行重建。

对每个位置的图像坐标集求最大值,并用其对 该位置的图像坐标进行归一化。表1为传统归一化 方法与本文方法的5次重构标准差对比。本文方法 充分考虑了成像过程中的线性因素,为神经网络解 决了部分的多余计算任务,使其更能专注于非线性 部分的计算,从而提高了标定精度。

表1 重构标准差

Methods	Normal method		Method in this paper	
Standard	$\sigma_{X_{\mathbf{W}}}/\mathrm{mm}$	$\sigma_{Y_{\mathbf{W}}}/\mathrm{mm}$	$\sigma_{X_{\mathbf{W}}}/\mathrm{mm}$	$\sigma_{Y_{\mathbf{W}}}/\mathrm{mm}$
deviation				
1	0.0812	0.2350	0.0569	0.0610
2	0.1191	0.0983	0.0475	0.0729
3	0.1071	0.2331	0.0594	0.0616
4	0.1204	0.1077	0.0554	0.0563
5	0.1727	0.1045	0.0695	0.0551
Average value	0.1201	0.1557	0.0577	0.0613

3.2 沿 Zw 轴方向标定

保持重构位置不变。剩余 30 个位置包括了 1520 个物点沿 Z_w 轴向运动的 30 个位置的信息,本 文从 1520 个点中选取了 81 个点的 Z_w 信息(共 2430 角点对)作为训练点集,其分布如图 7 所示。 建立 $4 \times 5 \times 10 \times 1$ 的 BP 神经网络,其他参数设置 与上节相同。对重建位置进行 Z_w 信息重构,结果 如图 8 所示。

图 7 训练点集分布 Fig. 7 Distribution of training set

图 8 Zw 重构结果 Fig. 8 Reconstruction of Zw coordinates

经计算,该位置 1520 个空间点的 Z_w 重构标准 差为 0.3674 mm。可以看出, Z_w 的标准差要远远 大于 X_w 和 Y_w 的标准差。这表明,影响总体标定 精度的主要因素为 Z_w 的标定精度。 Z_w 方向的成 像规律比 X_w 和 Y_w 的成像规律复杂得多;同时 Z_w 成像规律比较复杂,均匀分布的训练点集无法充分 反映其规律,导致标定精度降低。

3.3 总体实验分析

根据误差合成,并行标定方法的三维重建标准 差计算方法为

$$\delta = \sqrt{\delta_{X_{\mathrm{W}}}^2 + \delta_{Y_{\mathrm{W}}}^2 + \delta_{Z_{\mathrm{W}}}^2}, \qquad (14)$$

结合上述实验数据,计算得到最终的三维重建标准 差为 0.3769 mm。文献[16]使用一个训练集对三 维信息同时进行标定,虽然其三维重建精度达到了 10⁻³量级,但前提是对输出也进行归一化,而且其归 一化基数并未提到,但取值范围应该在几百到几千 毫米。因此,本文方法能够得到与文献[16]相当的 三维重建精度。

同时,沿 X_w和 Y_w轴向进行标定时,训练点集 规模为 3040 对应点;沿 Z_w轴方向进行标定时,训 练点集的规模为 2430 对应点;而标定空间中包含 47120 对应点。故训练集规模仅占整个空间的 11.6%。训练点集的规模直接影响神经网络的学习 速度,因此,本文能够在保证标定速度的前提下扩大 标定空间。

4 结 论

提出了一种新的并行标定方法和一种新的归一 化方法,扩大了标定空间,并进一步提高了 X_w 轴和 Y_w 轴向的标定精度。实验证明, Z_w 轴方向的标定 为整体大范围标定工作的重点,为后续研究指明方 向。研究表明,只有充分遵循摄像机成像规律,才能 合理训练点集,更好发挥神经网络的特点,进而在保 证标定精度和标定速度的同时,扩展标定空间,提高 标定方法的实用性。

参考文献

- 1 Ge Baozhen, Li Xiaojie, Qiu Shi. Camera lens distortion correction based on coplanar point direct linear transformation [J]. Chinese J. Lasers, 2010, 37(2): 488~494
- 葛宝臻,李晓洁,邱 实.基于共面点直接线性变换的摄像机畸 变校正[J]. 中国激光,2010,**37**(2):488~494
- 2 R. Y. Tsai. A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-shelf TV cameras and lenses[J]. *IEEE J. Robotics and Automation*, 1987, 3(4): $322 \sim 344$
- 3 Mao Xianfu, Su Xianyu, Liu Yuankun *et al.*. Analysis on optical coordinate measurement based on phase target[J]. Acta Optica Sinica, 2009, 29(9): 2452~2457 毛生宣 素見論 刘元恤 筆 其王相位标题的来受巫标测量方法

毛先富,苏显渝,刘元坤等.基于相位标靶的光学坐标测量方法 [J].光学学报,2009,**29**(9):2452~2457

4 Sun Junhua, Liu Zhen, Zhang Guangjun *et al.*. Camera calibration based on flexible 3D target[J]. Acta Optica Sinica, 2009, **29**(12): 3433~3439

孙军华,刘 震,张广军等.基于柔性立体靶标的摄像机标定 [J].光学学报,2009,**29**(12):3433~3439

5 Huo Ju, Yang Wei, Yang Ming. A self-calibration technique based on the geometry property of the vanish point [J]. Acta Optica Sinica, 2010, **30**(2): 465~472

霍 炬,杨 卫,杨 明.基于消隐点几何特性的摄像机自标定 方法[J].光学学报,2010,**30**(2):465~472

6 Zhu Jia, Li Xingfei, Xu Yingxin. Camera calibration technique based on active vision[J]. Acta Optica Sinica, 2010, 30(5): 1297~1303

朱 嘉,李醒飞,徐颖欣.摄像机的一种主动视觉标定方法[J]. 光学学报,2010,**30**(5):1297~1303

7 J. J. Hopfield, D. W. Tank. Neural networks and physical systems with emergent collective computational abilities [J].

Proceedings of the National Academy of Sciences, 1982, $\mathbf{79}(8)$: $2554\!\sim\!2558$

- 8 D. E. Rumelhart, J. L. McClelland. Parallel Distributed Processing[M]. Cambridge: MIT Press, 1986
- 9 J. Wen, G. Schweitzer. Hybrid Calibration of CCD cameras using artificial neural nets [C]. Proc. Int Joint Conf. Neural Networks (New York), 1991, 1: 337~342
- 10 M. Lynch, C. Dagli. Backpropagation neural network for stereoscopic vision calibration [C]. SPIE, 1992, 1615: 289~298
- 11 J. Jun, C. Kim. Robust camera calibration using neural network [C]. Proceedings of the IEEE Region 10 conference, 1999, $694\!\sim\!697$
- 12 Liu Hongjian, Luo Yi, Liu Yuncai. Variable precision camera calibration using neural network [J]. Optics and Precision Engineering, 2004, 12(4): 443~448
 - 刘宏建,罗 毅,刘允才.可变精度的神经网络摄像机标定法 [J].光学精密工程,2004,**12**(4):443~448
- 13 Zhang Guangjun. Machine Vision [M]. Beijing: Science Press,

2005. $24 \sim 27$

张广军. 机器视觉[M]. 北京: 科学出版社, 2005. 24~27

14 Liu Sheng, Fu Huixuan, Wang Yuchao. Camera calibration for stereo vision based on LS-SVM [J]. Opto-Electronic Engineering, 2008, 35(10): 21~25 刘 胜, 傅荟璇, 王字超. 基于 LS-SVM 的立体视觉摄像机标定

[J]. 光电工程, 2008, **35**(10): 21~25

- 15 Shin'ichi Tamura, Masahiko Tateishi. Capabilities of a fourlayered feedforward neural network: four layers versus three[J]. IEEE Transactions on Neural Networks, 1997, 8(2): 251~255
- 16 Yuan Ye, Ou Zongying, Tian Zhongxu. 3D reconstruction of stereo vision using neural networks implicit vision model[J]. J. Computer-Aided Design & Computer Graphics, 2003, 15(3): 293~296
 - 袁 野, 欧宗瑛, 田中旭. 应用神经网络隐式视觉模型进行立体 视觉的三维重建[J]. 计算机辅助设计与图形学学报, 2003, **15**(3): 293~296